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1  | INTRODUCTION

The first observations about stress were made by Selye, who 
can be considered the “father” of stress. He described stress as 

general adaption syndrome (GAS) and specified the role of hypo-
thalamic-pituitary-adrenocortical axis (HPA) and sympathetic-ad-
renal-medullary (SAM) system. He identified three phases and 
already underlined that the two first phases, alarm reaction and 
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Abstract
Introduction: The stress response is different in various individuals, however, the 
mechanisms that could explain these distinct effects are not well known and the mo-
lecular correlates have been considered one at the time. Particular harmful conditions 
occur if the subject, instead to cope the stressful events, succumb to them, in this 
case, a cascade reaction happens that through different signaling causes a specific 
reaction named “sickness behaviour.” The aim of this article is to review the complex 
relations among important molecules belonging to Central nervous system (CNS), 
immune system (IS), and endocrine system (ES) during the chronic stress response.
Methods: After having verified the state of art concerning the function of cortisol, 
norepinephrine (NE), interleukin (IL)-1β and melatonin, we describe as they work 
together.
Results: We propose a speculative hypothesis concerning the complex interplay of 
these signaling molecules during chronic stress, highlighting the role of IL-1β as main 
biomarker of this effects, indeed, during chronic stress its increment transforms this 
inflammatory signal into a nervous signal (NE), in turn, this uses the ES (melatonin and 
cortisol) to counterbalance again IL-1β. During cortisol resistance, a vicious loop oc-
curs that increments all mediators, unbalancing IS, ES, and CNS networks. This IL-1β 
increase would occur above all when the individual succumbs to stressful events, 
showing the Sickness Behaviour Symptoms. IL-1β might, through melatonin and vice 
versa, determine sleep disorders too.
Conclusion: The molecular links here outlined could explain how stress plays a role in 
etiopathogenesis of several diseases through this complex interplay.
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resistance, could not appear as dangerous for the health, while 
the third phase that he named exhaustion had to be considered 
differently, potentially hazardous (Selye, 1956). In fact, recurring 
stress appears to be dangerous, because it exceeds the ability 
to cope with it. Considering only the HPA, we can notice that 
in acute stress cortisol first is incremented and then decreases, 
instead during chronic stress cortisol lacks its circadian rhythm. 
This leads to the glucocorticoid resistance where the increment 
of cortisol associates with a lack of effect. Moreover, during the 
stress, if the effects of different hormones and signaling paracrine 
molecules have been studied thoroughly, their interplay was not 
considered by many. Recent attention has focused on the stress 
causes considering subjective and objective aspects regarded 
as both important. For example, work-related stress can derive 
either by objective aspects (e.g., increased job demand) or by 
neutral situations that the worker perceives as stressful. In this 
respect, it might be useful reporting the stress definition made by 
S. Cohen: “The experience of negative events or the perceptions of 
distress and negative affect that are associated with the inability to 
cope with them” (Cohen et al., 2001). This sentence explains very 
well, in our opinion, that not only the perception can realize an 
important difference explaining distinct responses to the events 
but also the individual response to the stressors, the way how in-
dividual copes the stressors can elucidate the lack of uniformity 
in reaction to the same event. According to this, McEwen and 
his team have recognized that protective and damaging effects 
of the biologic response to stressors should be named allostasis 
and allostatic overload, respectively (McEwen, 1998). In particu-
lar, allostasis is distinguished from homeostasis in that this it is an 
adaptive process that tries to maintain homeostasis by promot-
ing the release of glucocorticoids, catecholamines, and cytokines. 
On the other hand, allostatic overload refers to the response to 
prolonged stress, mediated by many neuroendocrine mediators 
(McEwen, 2008). Finally, neural mechanisms influence how an in-
dividual copes with this situation determining either vulnerability 
or resilience (Charney, 2004; Hodes et al., 2015).

The aim of this article is to highlight the links between central 
nervous system (CNS) and immune system (IS) considering also the 
role of endocrine system (ES) and circadian rhythm (CR). In this 
regard, it might be useful to study the stress evaluating the com-
plex link between cortisol, interleukin-1β (IL-1β), norepinephrine 
(NE), and melatonin during chronic stress. Since IL-1β can be con-
sidered as a bidirectional mediator between CNS and IS; then, we 
remark as CNS might act on IS and ES and as they might interfere 
between themselves. Although the stress response has been thor-
oughly studied at the molecular level, many studies considered 
one molecule at the time. Our article would like to show the com-
plex molecular interplay that could explain the various effects of 
stressful events on different subjects, considering as everyone's 
response depends on various circumstances. Then, we hypothe-
size that IS through IL-1β, ES using cortisol, CNS considering the 
role of NE, together may interfere on melatonin secretion modify-
ing the CR. In the network between CNS, IS, and ES, an important 

role is played by melatonin because it exerts effects on above con-
sidered systems also through CR. Moreover, it is known the role 
of melatonin on sleep and as this latter is critical for wellness and 
mental and physical health too. Many observations in these differ-
ent fields were reported, but nobody explored the links between 
different molecules that regulate particular systems capable to 
control themselves through positive or negative feedbacks. The 
choice to light up as the circumstances and events that subjects 
meet in their life may deteriorate the wellness or mental health 
and worsen the physical health interfering on the above-indicated 
systems is a fascinating challenge that we would like to take up: 
It might be an outlook for future research. Particularly interest-
ing appears the role of IL-1β, since this cytokine acts also as sleep 
regulatory substance and it is known as the sleep is essential for 
wellness and mental and physical health and as the same sleep 
buffers the IS maintaining the right balance between Th1 and Th2 
response.

2  | SEARCH STRATEGY

The following search items, combined with the Boolean term “AND,” 
were used to perform an electronic search in the PubMed, EMBASE, 
and Scopus databases: chronic stress, endocrine system, immune 
system, central nervous system, cortisol, melatonin, norepinephrine, 
cytokines, interleukin-1, interferon, hypothalamic-pituitary-adrenal 
axis, hypothalamic-pituitary-gonadal axis, circadian rhythm, major 
depressive disorder, sickness behaviors, and sleep regulatory sub-
stance. This is a narrative review of the literature and not a system-
atic review.

3  | GLUCOCORTICOIDS AND STRESS

Cortisol was named “stress hormone” because it augments in alarm 
reaction; however, a low increment of this hormone is not dangerous 
for health in that cortisol regulates numerous organ functions in the 
body (Figure 1). Cortisol has a distinct circadian rhythm, regulated 
by the central pacemaker localized in the suprachiasmatic nucleus, 
which activates the hypothalamic-pituitary-adrenal (HPA) axis. 
Cortisol levels are at the lowest levels at around midnight, start to 
decrease at 02:00–03:00 and peak in the morning, declining back 
to nadir throughout the day (Debono et al., 2009). The lack of this 
rhythm may result in many diseases. In fact, we may observe it in 
adrenal insufficiency (Chan et al., 2010) but the lack of this rhythm 
might even lead to cancer (Sulli et  al., 2019). Mortality in patients 
with breast cancer is associated with flattened cortisol rhythms 
(Sephton et al., 2000), and similarly patients with colorectal cancer 
and higher mortality cancer show erratic periods of rest/activity and 
poor sleep (Innominato et al., 2018; Mormont et al., 2000).

Besides by the HPA axis, two isoforms of the enzyme 11β-hy-
droxysteroid dehydrogenase (11β-HSD) regulate cortisol levels: 
11β-HSD1 is bidirectional but it is believed to act in vivo generating 
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predominantly the active cortisol from the inactive cortisone, 
while, in contrast 11β-HSD2 acts to convert cortisol to cortisone 
(Tomlinson et al., 2004).

The genetic actions of glucocorticoids are well known (Argentieri 
et al., 2017). When bound to glucocorticoids (GCs), the glucocorticoid 
receptor (GR), resident in the cytoplasm, translocates to the nucleus 
and modifies the synthesis of many metabolic, immune, and inflam-
matory proteins through either transactivation or transrepression. 
The first is operated by direct binding to glucocorticoid response 
elements (GREs) and leads an up-regulation of immune- and meta-
bolic-related proteins, while the second acts via the influence on the 
activity of transcription factors without contacting directly DNA and 
has as a result the down-regulation of proinflammatory and immuno-
suppressive proteins. Hormone binding and nuclear translocation of 
the GR is negatively regulated by the immunophilin FK506-binding 
proteins (FKBP) 51 (Wochnik et al., 2005). FKBP expression itself is 
induced by GCs as part of an intracellular ultra-short negative feed-
back loop for GR activity (Vermeer et al., 2003). Interestingly, poly-
morphisms of the FKBP5 gene are associated with increasing activity 
of the protein, causing GR resistance (Binder, 2009).

Glucocorticoids also exert nongenomic actions by activating 
transduction pathways and interacting with cellular membranes 
(Kadmiel et al., 2013; Strehl et al., 2013). Genomic and nongenomic 
mechanisms of action of GCs makes these hormones a key regula-
tor of many fundamental physiological systems, among which the 
immune, cardiovascular, and nervous ones have the pre-eminence 
(Kadmiel et al., 2013; Kalsbeek et al., 2012; Smith et al., 2006).

Conceivably, a resilient phenotype can be conferred by the hy-
peractivation of the HPA axis, through a mechanism called stress 
inoculation. If GC administration confers a proresilience status is not 
well known, likely involving traumatic memory consolidation such as 
in the posttraumatic stress disorder (Kearns et al., 2012).

In the opinion of several authors, vulnerability and resilience de-
pend on individual differences that are able to induce different neu-
roimmune and neuroendocrine responses. (Charney,  2004; Hodes 
et al., 2015). If the individual is overactive the stress vulnerability in-
creases due to unresolved stress responses and could induce mood 
disorders (Charney,  2004), although most individuals using appro-
priate coping strategies show resilience in the face of stress (Pfau 
et al., 2015; Russo et al., 2012).

F IGURE  1 Role of cortisol in health. This schematic represents the roles of glucocorticoids (cortisol) in major organ systems of the human 
body. Glucocorticoids act through genomic and nongenomic actions (see text for details)
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Finally, it has to be remarked that HPA axis hyperactivity and 
consequent GC resistance might represent the link between chronic 
stress and major depressive disorder (MDD), diabetes, and metabolic 
syndrome (Brown et al., 2004; Menard et al., 2017).

4  | STRESS,  GLUCOCORTICOIDS,  AND 
IMMUNE SYSTEM

It is known that inflammatory activity is controlled by different CNS 
processes (Slavich et al., 2014). Through this control, CNS can pre-
pare body to the injury before that infection occurs. By redistribut-
ing and trafficking of innate immune cells, the body anticipates the 
response to pathogen. It was also demonstrated that immune sys-
tem could response if an individual is exposed to social conflict, eval-
uation, rejection, or exclusion especially if these conditions appear 
as dangerous. However, this ancestral host defense mechanism is 
able to increase the risk for viral infection and inflammation-related 
disease. Sympathetic nervous system (SNS) and HPA axis would act 
together by releasing NE. In particular, it has been proposed (Cole 
et al., 1998; Lee et al., 2000) that NE would be capable to supress 
transcription of antiviral type I interferon (IFN) genes and up-regu-
late transcription of the proinflammatory immune response genes 
IL-1, TNF, and IL-6. This could lead to increments in systemic inflam-
matory activity (Cole et al., 2010; Grebe et al., 2010). In particular, 
IL-1β is a potent proinflammatory cytokine, playing important roles 
a part as pyrogen. It induces prostaglandin synthesis, neutrophil and 
T- and B-cell activation and antibody production, as well as favors 
fibroblast proliferation and collagen production. It appears useful 
to remember its synergism with IL-12 inducing IFN-γ synthesis from 
Th1 cells following cell stimulation with IL-12 (Tominaga et al., 2000).

The HPA axis plays an important role in the control of inflam-
mation, that is, innate immunity, through cortisol (Berkenbosch 
et al., 1987; Besedovsky et al., 1986; Sapolsky et al., 1987). Indeed, 
GCs are potent anti-inflammatory agents and act by inducing apopto-
sis in monocytes, macrophages, and T cells (Amsterdam et al., 2002) 
and suppressing the NF-κB pathway (De Bosscher et al., 2003).

This control on inflammation occurs in basal condition, whereas 
under other circumstances a different set of mechanisms can 
emerge, leading to HPA axis-related increase in inflammation (Avitsur 
et al., 2001; Miller et al., 2002). This process was named as glucocor-
ticoid resistance, whereby it appears that immune cells become less 
sensitive to the effects of glucocorticoids (Schleimer, 1993). When 
glucocorticoid resistance develops, “fight or flight” responses to 
social threat are altered and determines exaggerated inflammation, 
particularly if these responses occur frequently. Thus, GC resistance 
provoked by chronic stress may determine a reduction in anti-in-
flammatory and proresolving actions of GCs and a prolonged inflam-
matory process (Cohen et  al.,  2012). Different authors retain that 
these mechanisms could affect mental and physical health (Marques 
et  al.,  2009; McEwen,  1998, 2008; McEwen et  al.,  1999). For ex-
ample, subjects with MDD have flatter diurnal slopes than persons 
without MDD, and glucocorticoid sensitivity can in part explain 

these higher overall cortisol concentrations (Anacker et  al.,  2011; 
Fries et al., 2005; Jarcho et al., 2013; Pace et al., 2007, 2011).

Cortisol exert important effects on adaptive IS. This was investi-
gated by Elenkov and Chrousos (Elenkov et al., 2002), which verified 
that cortisol was able to polarize naive CD4 + T cells toward the T 
helper (Th)2 subset. This polarization would make the subject more 
susceptible to infective disorders and autoimmune diseases, as well 
as also less reactive toward cancer.

In this context, it is important to mention Palumbo et al. (Palumbo 
et al., 2010), who showed that BALB/c mice were less protected by 
the stress than C57BL/6 mice, this correlating with a differential reg-
ulation of the Th1/Th2 cytokine balance. In fact, stress induces a Th1 
response in C57BL/6 mice with an increase of IFN production that 
could protect against the neurodegenerative processes. Instead in 
BALB/c mice an increase in Th2 cytokines and a decrease in IFN cor-
relate with poor memory performances during chronic mild stress. 
Thus, it might happen that during glucocorticoid resistance state, 
cortisol polarizes IS toward a Th2 response (Elenkov et al., 2002),

5  | NEUROINFLAMMATION AND STRESS

Different authors retain that stress is able to modify inflammatory 
events in CNS and in immune system, such responses promoting 
behavioral vulnerability and resilience. It is known that the stress 
can induce monocytosis (Ginhoux et al., 2014). Moreover, the acute 
stress induces an adaptive response, but chronic stress promote sus-
tained, unresolved inflammation, and leukocytosis, these last consid-
ered hallmark symptoms of depression (Maes et al., 1992). In animal 
models of depression-like behavior increased proinflammatory cy-
tokines levels were reported (Grippo et al., 2005; Hodes et al., 2014). 
Different research groups showed that IL-1β tumor necrosis factor 
(TNF), or lipopolysaccharide (LPS) were able to promote proinflam-
matory genes and proteins in the brain (van Dam et al., 1992; Laye 
et al., 1994; Quan et al., 1999). Moreover, they induce, in rodents, 
sickness behaviors characterized by social withdrawal, loss of ap-
petite, decreased motor activity, and cognitive deficits (Dantzer 
et al., 2008). More recently, a similar correlation between immune 
response and sickness behavior was found in zebrafish. It was ob-
served that zebrafish inoculated intraperitoneally with Aeromonas 
hydrophila bacterin had not only a systemic inflammatory response 
that altered the expression of cytokines gene in the brain but also 
alterations in behavioral parameters (Kirsten et al., 2018). Overall, 
these results show that even though specific behavior varies from 
species to species, the sickness behavior seems to be conserved 
among all vertebrates.

Interestingly, Hodes and colleagues observed that mice that 
showed increment of IL-1β and IL-6 in the blood after a single expo-
sure to an aggressor became susceptible, instead mice resilient had 
not this increase (Hodes et al., 2014).

Some authors (Banks et al., 1994, 1995; Hodes et al., 2015) re-
ported that cytokines are able to cross Blood-Brain Barrier (BBB), so 
they can act on astrocytes, neurons, and microglia. Brain endothelial 
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cells play an important role in the inflammatory response underlying 
chronic stress because they are capable to produce and secrete cy-
tokines (Verma et al., 2006).

Two independent research groups demonstrated that rodents 
vulnerable to stress following LPS stimulation had an important in-
crement of IL-1β, IL-6, and TNF-α, while unstressed controls showed 
no increase (Frank et al., 2007; Wohleb et al., 2011). Following stud-
ies confirming such results, (Koo et al., 2008) reported that inhibi-
tion of IL-1β receptor rescues anhedonia in rats exposed to chronic 
stress (Koo et al., 2008). Maier et al (Maier et al., 1995) showed that 
such receptor blockage prevented failure to escape in the Learn 
Helplessness paradigm, confirming the role of IL-1β in stress vulner-
ability. Mason et al. described an interesting association between 
diabetes, atherosclerosis, myocardial infarction, and rheumatoid ar-
thritis and MDD. Patients with this comorbidity also tend to exhibit 
enhanced activation of the NLRP3 inflammasome complex (Mason 
et al., 2012).

In addition to the circumstance that activated macrophages as 
well as microglia are able to produce IL-1β, it was demonstrated 
its ability to activate the HPA axis and suppress the hypothalam-
ic-pituitary-gonadal (HPG) axis (Berkenbosch et al., 1987; Sapolsky 
et  al.,  1987; Sirivelu et  al.,  2012). For this reason, O'Connor and 
colleagues, underlining these neuroendocrine effects, proposed 
its role in the homeostatic adaptation during an immune challenge 
(O'Connor et al., 2000). These effects are produced by IL-1β acting 
on specific brain regions regulating HPA and HPG axes (Figure 2). 
These brain areas rich in corticotrophin-releasing hormone (CRH) 
neurons are responsive to immune stimulation and regulate HPA 
or stress axis and constitute the link between IS and CNS (Herman 
et  al.,  2003). Gonadotropin release hormone (GnRH) neurons and 
CRH neurons are stimulated both by NE (Kadmiel et al., 2013). Thus, 
IL1β activates the HPA axis by stimulating CRH neurons, the result 

being an increment of adrenocorticotropin (ACTH) from the pituitary, 
and ultimately an increase in corticosterone secretion from the adre-
nal gland (Berkenbosch et al., 1987; Besedovsky et al., 1986; Brady 
et al., 1994; Sapolsky et al., 1987). However, it is unclear as IL-1β in-
cites CRH secretion, perhaps an increase of NE levels in the paraven-
tricular nucleus (PNV) mediates this effect (DeKeyser et al., 2000; 
Schmidt et al., 2001). On this line, Sirilevu and colleagues showed in 
mice that NE in the PNV could be considered a mediator of the stress 
response induced by IL-1β (Sirivelu et al., 2012).

Goshen and Yirmiya (Goshen et  al.,  2009) considered IL-1 in 
stress response and suggested that either glia cells and neurons are 
capable to produce IL-1 or that IL-1 produced peripherally enters 
into the brain (Dinarello,  1996; Maier et  al.,  1998). IL-1β produces 
its effect in the brain either by crossing the BBB (Banks et al., 1989) 
and by activation of vagal afferent fibers. This last circumstance is 
proved by vagotomy that was capable to block centrally mediated 
effects of peripheral immune activation (Gaykema et  al.,  2000; 
Watkins et al., 1995) and attenuate the effects of peripherally ad-
ministered IL-1 on the behavior (Bluthe et  al.,  1996). Moreover, 
Goshen and Yirmiya (Goshen et  al.,  2009) have hypothesized that 
immunological and psychological stress responses activate microg-
lia, which produces de novo IL-1 or secrete a prestored pool. The 
stress would induce stimulation of NE secretion within the brain 
and could stimulate this response. It is noteworthy that either IS and 
psychological stressors share many IL-1 mediated effects including 
fever, alterations in peripheral immune parameters, neuroendocrine 
modulation, and sickness behavior symptoms. In addition, it has 
been demonstrated that there exists a two-way relationship be-
tween brain IL-1 and noradrenergic systems as the effects of IL-1 on 
the hypothalamic noradrenergic neurotransmission are influenced 
by the activity of IL-1 on HPA axis. As a result, many neurobehav-
ioral mechanisms are modified by the stress-induced IL-1 mediated 

F IGURE  2 The role of Il-1β in the 
endocrine system. IL-1β, produced by 
microglia, can activate the hypothalamic-
pituitary-adrenocortical (HPA) axis and 
suppress the hypothalamic-pituitary-
gonadal (HPG) axis, by increasing or 
decreasing noradrenaline (NE) in specific 
brain regions enriched in corticotrophin-
releasing hormone (CRH) neurons and 
gonadotropin-releasing hormone (GnRH), 
respectively. The protein structure of IL-1β 
was taken from the RCSB-protein data 
bank (www.rcsb.org/)

http://www.rcsb.org/
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release of glucocorticoids. In particular, IL-1 plays a key role in 
stress-induced modulation of the process of memory functioning 
(Goshen et al., 2007).

Summarizing, it was assumed that whereas in some physiolog-
ical condition low amounts of IL-1 encourage the adaptive stress 
responses required for adequate coping, in severe and long-term 
stress situations IL-1 moderated various harmful cognitive and emo-
tional effects of stress.

Krueger (Krueger, 2008) also suggested IL-1β as a sleep regula-
tory substance (SRS), specifically it causes nonrapid eye movement 
sleep (NREMS), together with TNF, growth hormone-releasing hor-
mone (GHRH), adenosine, prostaglandin D2, that all produce the 
same results. Situations which promote internal production of IL-1 
or TNF, for example, unrestricted food intake (Hansen et al., 1998) or 
infections (Toth et al., 1988), stimulate NREMS (Krueger et al., 2007; 
Obal et  al.,  2003). That cytokines are implied in the physiological 
sleep supervision, and their relations to other SRSs have been de-
scribed in many reviews (Kapsimalis et al., 2005; Krueger et al., 2007; 
Obal et  al.,  2003). Many laboratories have produced what is now 
enormous evidence concerning sleep deprivation-enhanced IL-
1β, and the associated cytokine TNF, to symptoms connected to 
sleep privation, such as sensitivity to firing (Yi et al., 2004) and pain 
stimuli (Honore et  al.,  2006; Kawasaki et  al.,  2008; Kundermann 
et  al.,  2008), cognitive (Baune et  al.,  2008; Gambino et  al.,  2007; 
Trompet et al., 2008), memory (Banks et al., 2007; Dantzer, 2004; 
Pickering et  al.,  2007), and performance impairments (Banks 
et  al.,  2007), depression (Anisman et  al.,  2003; Vollmer-Conna 
et  al.,  2004), sleepiness (Krueger et  al.,  2007; Moldofsky,  1995; 
Tringali et al., 2000), and fatigue (Anisman et al., 2003; Carmichael 
et al., 2006; Omdal et al., 2005). In addition, long-term sleep depri-
vation is linked to pathologies as metabolic syndrome, (Hristova 
et al., 2006; Jager et al., 2007; Larsen et al., 2007) chronic inflam-
mation (Frey et al., 2007; Hu et al., 2003), and cardiovascular disease 
(Yndestad et  al.,  2007). All of these sleep loss-connected symp-
toms can be triggered by inoculation of exogenous IL-1 and or TNF 
(Krueger et al., 2007; Obal et al., 2003), or in some cases stopped 
if these cytokines are suppressed (Depino et  al.,  2004; Larsen 
et al., 2007; Obal et al., 2003; Opp & Krueger, 1991).

Brain levels of IL-1 mRNA and plasma levels of IL-1 change along 
with sleep-wake cycle with highest levels related to high sleep ten-
dency (Fang et al., 1997, 1998). Antisomnogenic cytokines behave, 
in part, by suppressing production of prosomnogenic mediators. For 
example, IL-10 stops IL-1 and TNF secretion and rises the production 
of sleep-inhibitory substances as CHR. IL-1 and TNF may also consti-
tute a connection between the circadian rhythm and sleep homeo-
stasis. There are nictemeral rhythms in brain cytokines including IL-1 
and TNF (Krueger et al., 2007).

To conclude, IL-1 is a cytokine which promotes neuroinflamma-
tion and is synthetized and secreted during innate immune reactions. 
Its production increases also in psychiatric disorders as depression 
and anxiety, making IL-1 a biomarker of stress and sleep disorders. 
It is noteworthy to deepen the study of this cytokine because it ap-
pears linked to cortisol, epinephrine, and melatonin. These molecules 

control numerous pathway and systems (CNS, IS, and ES) these per-
mit them to exert a mutual control. These molecular links and their 
characteristic functions could indicate new starting points in order 
to propose future researches to understand as different subjects do 
not show the same manifestations and the same prognosis even if 
they have the same disease, verifying as the stress can interfere on 
progress and onset of the diseases, including those of infective ori-
gin. Moreover, the role of this cytokine in the sleep deprivation could 
explain as the stress can act worsening mental health.

6  | MELATONIN

Central nervous system, IS, and ES network use NE, IL-1β and cor-
tisol, nevertheless melatonin appears as a molecule capable to play 
different roles either in both IS and ES. Its secretion and its function 
are controlled by NE and IL-1β. Moreover, if in the past it was con-
sidered only as a hormone, today its role is increasingly investigated 
as a multifunctional molecule, and because of this, we would like to 
consider its role in chronic stress.

Melatonin has been revealed and studied from bovine pineal 
gland by the dermatologist Aaron Lerner in the 1958 (Claustrat 
et al., 2005). It is the major hormone produced by the pineal gland. 
Other sources are retina, gut, skin, platelets, and the bone marrow 
(Liu et  al.,  2004; Stefulj et  al.,  2001). Melatonin has indole form 
(N-acetyl-5-methoxytryptamine) and is produced from serotonin. In 
spite of the fact that melatonin has been widely found in the animal 
world, it was also observed in higher plants and bacteria. It is proba-
ble that melatonin is one of early compounds which was present on 
earth to arrange some basic events of life.

The principal physiological tasks of melatonin are associated 
with hormonal properties, even if it may also present autocrine or 
paracrine characteristics, for example, in the retina or the gut (Tan 
et al., 2003). The pineal gland was initially considered to be a working 
neuroendocrine transformer of environmental data in animals, espe-
cially in photoperiodic animals. For numerous years, the information 
had been extrapolated to humans. Today, partial knowledge of the 
role of melatonin in human physiology and pathology has arisen, but 
many functions and outcomes of melatonin remain in the dark.

Melatonin shows high lipid and water solubility (octanol/water 
coefficient of partition  =  13) which makes the passing across cell 
membranes easier (Pardridge et al., 1980). Because there is no stor-
age room for melatonin, the plasma hormone figure testifies pre-
cisely the pineal activity (Reiter, 1991).

The secretion takes place at night, with highest plasma levels 
around 03:00–04:00 am, changing with chronotype, while daytime 
levels are untraceable, or low in people at rest. This nyctohemeral 
cycle shows the most pronounced extent observed for a hormone, 
even more pronounced than that of cortisol. Still, it is very replicable 
from day to day in the same person and illustrates one of the firmest 
circadian rhythms. It offers a nice assessment of the secretion of 
melatonin, in the lack of renal or hepatic anomaly (Grof et al., 1985). 
The light/dark rhythm is the main Zeitgeber of the control system of 
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melatonin secretion. The melatonin cycle is started around the dark 
period. The photic data are transferred to the central pacemaker 
through the retino-hypothalamic fibers: over the day, in the pres-
ence of light, the output from the retino-hypothalamic tract sup-
presses the synthesis of melatonin. Artificial room light of adequate 
intensity and duration applied at night suppresses melatonin secre-
tion (Lewy et al., 1980). Moreover, after light exposition for various 
sequential nights, the melatonin secretion eludes the inhibitory ef-
fect and gradually shifts to the morning. The neural pathway of the 
SNC from the hypothalamus to the pineal gland runs first through 
the superior part of the cervical spinal cord, where synaptic con-
nections are made up with preganglionic cell bodies of the superior 
cervical ganglia (SCG) of the sympathetic chains. Then, neural cells 
in the SCG dispatch projections to the pineal gland. The major neu-
rotransmitter governing the pineal gland is norepinephrine, which is 
liberated at night, in reply to exciting signals which originate in the 
SNC. β1-adrenergic blockers inhibit the nocturnal melatonin secre-
tion (Cagnacci, 1996).

Current acquired evidence indicates that the pineal gland 
can play a key role in adjusting the immune response (Guerrero 
et al., 2002). Moreover, the relationship between the pineal gland 
and the immune system is two-sided since interleukins and cytokines 
(such as IFN-γ) influence melatonin synthesis and release (Hardeland 
et  al.,  1999). IFN-γ increased the melatonin making by the pineal 
gland cells in vitro (Withyachumnarnkul et al., 1990), rather dosing 
of recombinant IL-1β suppressed serum melatonin levels in rats via 
a receptor process (Mucha et  al.,  1994), and TNF-α generated by 
the pineal gland microglia inhibited the synthesis of melatonin (da 
Silveira Cruz-Machado et al., 2012).

Also the immune defense system is a resource of extrapineal mel-
atonin, particularly peripheral blood mononuclear cells, circulating 
leucocytes, and macrophages are able to produce melatonin. On the 
other side, elevated concentrations of melatonin incremented IL-1β 
levels in mice splenocytes (Arias et  al.,  2003). Experimental tests 
on trauma-hemorrage in mice led to an immunosuppressed condi-
tion with low rates of IL-1 and IL-6 production, which were rebuilt 
to basal control ranges after therapy with melatonin (Wichmann 
et al., 1996). Contrarily, melatonin shows different attitude in con-
ditions with worsened immune responses. Melatonin lowers neutro-
phil permeation and levels of the mediators of inflammation during 
rat heartstroke-provoked lung inflammation and airway hyperreac-
tivity (Chen et al., 2011; Lin et al., 2011).

A two-faced impact of melatonin on the phorbol myristate acid 
(PMA)-induced respiratory burst in human neutrophils has also been 
characterized; while low rates (10 nM) improve the response, high 
rates (2 mM) suppressed it (Pieri et al., 1998). Moreover, melatonin 
disabled the increased production of proinflammatory mediators, 
above all cytokines, in a great number of in vivo models of inflam-
mation (Agil et  al.,  2013; Ara et  al.,  2011; Chahbouni et  al.,  2010; 
Chen et  al.,  2011; Esposito et  al.,  2008; Ganguly et  al.,  2012; 
Gitto et  al.,  2004, 2012; Gulben et  al.,  2010; Jang et  al.,  2013; 
Jung et  al.,  2009, 2010; Kang et  al.,  2011; Kara et  al.,  2013; Kaur 
et al., 2013; Kireev et al., 2008; Kunak et al., 2012; Li et al., 2005; Lin 

et al., 2011; Mazzon et al., 2006; Mei et al., 2002; Negi et al., 2011; 
Ochoa et  al.,  2011; Olcese et  al.,  2009; Ozen et  al.,  2007; Sener 
et al., 2006; Tahan et al., 2011; Tsai et al., 2011; Tyagi et al., 2010; 
Veneroso et  al.,  2009; Wang et  al.,  2005; Xu et  al.,  2007; Yang 
et al., 2011; Yip et al., 2013).

Early in vitro studies proposed that melatonin elicits the Th1 arm 
of the adaptive IS (Garcia-Maurino et al., 1999). Substimulated pe-
ripheral blood mononuclear cells showed increased production of 
Th1 cytokines, like IFN-γ and IL-2, after in vitro melatonin supple-
ment (Garcia-Maurino et al., 1997, 1999). The daytime rhythmicity 
of human cytokine secretion showed that the IFN-γ/IL-10 peak takes 
place during the early morning, this climax definitely related to plasma 
melatonin (Petrovsky et al., 1997), implying a melatonin/Th1 causal 
link. On the contrary, melatonin substantially decreased the splenic 
CD19+ B-cell population in mice with membranous nephropathy and 
reduced the TNF-α, IL-1β and IFN-γ overexpression (Wu et al., 2012). 
Additional in vivo studies have displayed the ability of melatonin to 
stimulate a Th2 response in different models. It was shown first that 
high doses of melatonin promoted the production of the Th2 cyto-
kine IL-4 in bone marrow lymphocytes (Maestroni, 1995). Early over-
night sleep caused a shift in the Th1/Th2 cytokine balance toward 
higher Th1 activity, while the Th2 response was dominant during a 
late sleep. A firm decline in TNF-α-producing CD8+ cells was also 
detected during sleep (Dimitrov et al., 2004), proposing a correlation 
between melatonin and the Th2 response. Similarly, the lack of mel-
atonin due to pinealectomy polarized rat thymic Th1/Th2 cells to-
ward a Th1 response by raising the production of IFN-γ and reducing 
IL-10 levels, suggesting that melatonin bends the immune response 
toward Th2 supremacy (Kelestimur et al., 2006). Growing doses of 
melatonin (0.25–1 mg/kg) given to mice infected with Venezuelan 
equine encephalomyelitis virus (VEEV) substantially rised serum 
levels of TNF-α, IL-1β and IFN-γ. Blockage of IL-1β with antimurine 
IL-1β antibodies entirely canceled the protective role of melatonin, 
implying that that IL-1β is the main target for the fast viral clearance 
caused by melatonin (Valero et al., 2002).

Therefore, melatonin has not to be considered alone, but it needs 
to be deemed together with IL-1β, cortisol, and NE. Particularly, these 
molecules act as a network where they control each other determin-
ing and influencing stress response and conversely adjustments in 
ES, IS, and CNS. The study of manner how they act together is diffi-
cult and we can only speculate without hiding that such hypothesis 
will have to be carefully verified through future research.

7  | CONCLUDING REMARKS AND 
HYPOTHESIS

Stress might be considered as a condition where IS, CNS, and ES 
work together: such network is achieved by cortisol, norepinephrine, 
melatonin, and cytokines, with particular emphasis on interleukin-1β.

Based on the above-cited literature, we would like to propose 
a hypothesis able to correlate these different signaling paracrine 
and hormones. Despite the difficulty to study these systems in 
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their interactions with each other, an important control that every 
substance reciprocally exerts on each other can be observed and 
a complex interplay between them can be proposed (Figure  3). 
Accordingly, NE determines an incremental effect on melatonin and 
CRH, with the latter able to increment cortisol; NE is also capable 
to reduce IFN-γ, thus NE might be considered an anti-Th1 effector. 
Moreover, this effect on Th1 would be incremented by melatonin 
that acts as pro-Th2. Also cortisol was demonstrated to increase the 
Th2 response, and melatonin, like NE, can reduce IFN-γ.

Considering cortisol, we may observe that it determines a dec-
rement in IL-1β and an increment in NE, then it would generate an 
anti-inflammatory response. Considering the role of IL-1β we can 
observe that it increments NE, reduces melatonin, but because the 
latter increases IL-1β it might play as a negative feedback on this 
cytokine. We know that IL-1β produced by glial cell, neurons, and 
IS, is able to pass through BBB determining Sickness Behaviour 
Symptoms. Moreover, Palumbo et al. (Palumbo et al., 2010) gave ev-
idence that strains of mice had different resistance to the stress and 
the strain less resistant showed an important IL-1 increment follow-
ing aggression. Important is the observation (Ashley et al., 2017) that 
demonstrated IL-1 was able to stimulate HPA axis through increment 
of NE in brain areas rich in CRH neurons and an inhibition of HPG 
axis through decrement of NE in the brain areas rich in GnRH neu-
rons (Figure 2).

Based on these considerations, we may hypothesize IL-1β to 
be the main cause of adverse stress effects and also the main bio-
marker of this effects, because it determines an increment of NE 

that induces a cascade effects on melatonin and cortisol that in turn 
act on IS and also on IL-1β itself; particularly important appears the 
cortisol effect during cortisol resistance where cortisol increases IL-
1β, instead to reduce it. High levels of GC in chronic stress (i.e., in 
depression) cause resistance to glucocorticoid feedback on the HPA 
axis, and this developed glucocorticoid resistance allows the escape 
of proinflammatory signaling pathways from normal feedback inhi-
bition (Pariante, 2017). Then, we might summarize all observations 
with this hypothesis: During chronic stress, the increment of IL-1β 
transforms this inflammatory signal in nervous signal (NE), in turn, 
this uses the ES (melatonin and cortisol) to counterbalance again IL-
1β, but this control could not function during cortisol resistance as in 
physiological circumstances. A vicious loop ensues that increments 
all mediators, unbalancing IS, ES, and CNS network. This increase in 
IL-1β would appear to occur above all when the individual instead 
to cope the stressful event, succumbs to it showing the Sickness 
Behaviour Symptoms. These symptoms derive from IL-1β, then they 
could be the outcome of this loop, particularly the increment of IL-1β 
might not be counteracted by cortisol and this event would be able 
to unbalance CNS, IS, ES, network polarizing IS toward a Th2 re-
sponse. These effects could represent the link between stress and 
autoimmunity and carcinogenesis through a reduction of control 
mechanism on tumor growth feature of Th1 response.

Considering all said above it might appear useful measuring IL-1β to 
evaluate stress and stress effects; it could be proposed as an important 
benchmark to evaluate stress jointly with cortisol and melatonin, espe-
cially when it is a response at events perceived as aggressive.

F IGURE  3  Interplay between central nervous system, endocrine system, and immune system. Under physiological conditions, 
norepinephrine (NE) activates the HPA axis and determines the production of cortisol that in turn downregulates the production of IL-1β. 
During chronic stress and especially glucocorticoid resistance state, the increment of IL-1β transforms this inflammatory signal in nervous 
signal (NE). In turn, NE uses the ES (melatonin and cortisol) to counterbalance again IL-1β, but this control cannot function during cortisol 
resistance. NE induces eventually a skewing in the immune response, with reduction in IFN-γ and Th1 activation, and with unbalancing 
toward Th2 response. The protein structure of IL-1β was taken from the RCSB-protein data bank (www.rcsb.org/)

http://www.rcsb.org/
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